miércoles, 26 de septiembre de 2012

Sistema de Numeración Decimal


Definición de Sistema de Numeración Decimal.
El Sistema de Numeración Arábigo Decimal se pueden representar infinitos números reales. Para ello, se utilizan diez cifras o dígitos numéricos: 0,1, 2, 3, 4, 5, 6, 7, 8 y 9 (diez son los dedos de las manos). También se usan los signos más (+) y menos (-) para representar a los números positivos y negativos, respectivamente, y un punto (.) o una coma (,) para separar la parte entera de laparte fraccionaria.
Sistema binario.
El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es el que se utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).
De acuerdo con la representación más habitual, que es usando números árabes, los números binarios comúnmente son escritos usando los símbolos 0 y 1. 

Número entero


Número entero
Los números enteros son un conjuntode números que incluye a los números naturales distintos de cero (1, 2, 3, ...), los negativos de los números naturales (..., −3, −2, −1) y al cero, 0. Los enteros negativos, como −1 o −3 (se leen «menos uno», «menos tres», etc.), son menores que todos los enterospositivos (1, 2, ...) y que el cero. Para resaltar la diferencia entre positivos y negativos, a veces también se escribe un signo «más» delante de los positivos: +1, +5, etc. Cuando no se le escribe signo al número se asume que es positivo.
El conjunto de todos los números enteros se representa por la letra   = {..., −3, −2, −1, 0, +1, +2, +3, ...}, que proviene del alemán Zahlen («números», pronunciado [ˈtsaːlən]).
Los números enteros no tienen parte decimal. Por ejemplo:
−783 y 154 son números enteros
45,23 y −34/95 no son números enteros
Al igual que los números naturales, los números enteros pueden sumarserestarsemultiplicarse ydividirse, de forma similar a los primeros. Sin embargo, en el caso de los enteros es necesario calcular también el signo del resultado.

¿Que son los Numeros Enteros?

Número entero, cualquier elemento del conjunto formado por los números naturales y sus opuestos. El conjunto de los números enteros se designa por Z:
Z = {…, -11, -10,…, -2, -1, -0, 1, 2,…, 10, 11,…}
Los números negativos permiten contar nuevos tipos de cantidades (como los saldos deudores) y ordenar por encima o por debajo de un cierto elemento de referencia (las temperaturas superiores o inferiores a 0 grados, los pisos de un edificio por encima o por debajo de la entrada al mismo…).
Se llama valor absoluto de un número entero a, a un número natural que se designa |a| y que es igual al propio a si es positivo o cero, y a -a si es negativo. Es decir:
• si a > 0, |a| = a ; por ejemplo, |5| = 5; 
• si a < 0, |a| = -a ; por ejemplo, |-5| = -(-5) = 5. 

El valor absoluto de un número es, pues, siempre positivo.
Las operaciones suma, resta y multiplicación de números enteros son operaciones internas porque su resultado es también un número entero. Sin embargo, dos números enteros sólo se pueden dividir si el dividendo es múltiplo del divisor.
Suma de Numeros Enteros
Para sumar dos números enteros se procede del siguiente modo:
• Si tienen el mismo signo, se suman sus valores absolutos, y al resultado se le pone el signo que tenían los sumandos: 
• 7 + 11 = 18 
• -7 - 11 = -18 

Multiplicacion de Numeros Enteros
Para multiplicar dos números enteros se multiplican sus valores absolutos y el resultado se deja con signo positivo si ambos factores son del mismo signo o se le pone el signo menos si los factores son de signos distintos. Este procedimiento para obtener el signo de un producto a partir del signo de los factores se denomina regla de los signos y se sintetiza del siguiente modo:
+ · + = + 
+ · - = - 
- · + = - 
- · - = + 

La multiplicación de números enteros tiene las propiedades siguientes:
Asociativa: 
(a · b) · c = a · (b · c) 
Conmutativa: 
a · b = b · a 
Elemento neutro: el 1 es el elemento neutro de la multiplicación, 
a · 1 = a 
Distributiva de la multiplicación respecto de la suma: 
a · (b + c) = a · b + a · c


Resta de Numeros Enteros
Para restar dos números enteros se le suma al minuendo el opuesto del sustraendo:
a - b = a + (-b) 
Por ejemplo:
5 - (-3) = 5 + 3 = 8 
-2 - 5 = (-2) + (-5) = -7

Número irracional


Número irracional
En matemáticas, un número irracional es un número que no puede ser expresado como una fracción, donde  y  son enteros, con  diferente de cero y donde esta fracción es irreducible. Es cualquier número real que no es racional.
Notación
No existe una notación universal para indicarlos, como\mathbb{I}, que es generalmente aceptada. Las razones son que el conjunto de Números Irracionales no constituyen ninguna estructura algebraica, como sí lo son los Naturales (\mathbb{N}), los Enteros (\mathbb{Z}), los Racionales (\mathbb{Q}), los Reales (\mathbb{R}) y los Complejos (\mathbb{C}), por un lado, y que la \mathbb{I} es tan apropiada para designar al conjunto de Números Irracionales como al conjunto de Números Imaginarios Puros, lo cual puede crear confusión.
Fuera de ello,\mathbb{R} \setminus \mathbb{Q}  es la denotación del conjunto por definición.
Clasificación
Tras distinguir los números componentes de la recta real en tres categorías: (naturales, enteros y racionales), podría parecer que ha terminado la clasificación de los números, pero aún quedan "huecos" por rellenar en la recta de los números reales. Los números irracionales son los elementos de dicha recta que cubren los vacíos que dejan los números racionales.
Los números irracionales son los elementos de la recta real que no pueden expresarse mediante el cociente de dos enteros y se caracterizan por poseer infinitas cifras decimales no periódicas. De este modo, puede definirse al número irracional como un decimal infinito no periódico. En general, toda expresión en números decimales es solo una aproximación en números racionales al número irracional referido, por ejemplo, el número racional 1,4142135 es solo una aproximación a 7 cifras decimales del número irracional raíz cuadrada de 2, el cual posee infinitas cifras decimales no periódicas.
Entonces, decimos con toda propiedad que el número raíz cuadrada de dos es aproximadamente igual a 1,4142135 en 7 decimales, o bien es igual a 1,4142135… donde los tres puntos hacen referencia a los infinitos decimales que hacen falta y que jamás terminaríamos de escribir.
Debido a ello, los números irracionales más conocidos son identificados mediante símbolos especiales; los tres principales son los siguientes:
(Número "pi" 3, 14159...): razón entre la longitud de una circunferencia y su diámetro.
e (Número "e" 2,7182 ...):
(Número "áureo" 1, 6180...):
Los números irracionales se clasifican en dos tipos:
1.- Número algebraico: Son la solución de alguna ecuación algebraica y se representan por un número finito de radicales libres o anidados; si "x" representa ese número, al eliminar radicales del segundo miembro mediante operaciones inversas, queda una ecuación algebraica de cierto grado. Todas las raíces no exactas de cualquier orden son irracionales algebraicos. Por ejemplo, el número áureo es una de las raíces de la ecuación algebraica, por lo que es un número irracional algebraico.
2.- Número trascendente: No pueden representarse mediante un número finito de raíces libres o anidadas; provienen de las llamadas funciones trascendentes (trigonométricas, logarítmicas y exponenciales, etc.) También surgen al escribir números decimales no periódicos al azar o con un patrón que no lleva periodo definido, respectivamente, como los dos siguientes:
Los llamados números trascendentes tienen especial relevancia ya que no pueden ser solución de ninguna ecuación algebraica. Los números pi y e son irracionales trascendentes, puesto que no pueden expresarse mediante radicales.
Los números irracionales no son numerables, es decir, no pueden ponerse en biyección con el conjunto de los números naturales. Por extensión, los números reales tampoco son contables ya que incluyen el conjunto de los irracionales.
Número Irracionales:
Concepto:
Son aquellos que se escriben mediante una expresión decimal con infinitas cifras y no periódicas. Dicho conjunto lo denotamos por "I".
Operaciones de los Números Irracionales:
Adición:
Es la combinación interna de unidades decimales que se originan de una suma algebraica de dos o más sumandos.
Ej.
35,72
17,5
183,246
236,466
Sustracción:
Es la operación inversa a la suma de decimales y tiene por objeto, dados los elementos (minuendo, sustraendo y diferencia)..
Ej.
57,35
- 24,41
32,94
Multiplicación:
Para multiplicar los decimales, ellos se multiplican como enteros y en el producto se separan tantas cifras decimales como tengan entre los dos factores, escribiendo ceros a la izquierda si son necesarios para separar las cifras decimales.
Pero en cuanto a la unidad seguida de ceros, se recorre la coma decimal tantos lugares como ceros tengan el multiplicando, añadiendo a la derecha del numero decimal los ceros que sean precisos para poder recorrer la coma.
Ejemplos:
3,57 * 10 = 35,7.
16,7 * 100 = 1670.
25,32
X 100
2532,00
División:
Esta es efectuada si el dividendo y el divisor fueran números naturales, pero al bajar la primera cifra decimal se coloca la coma al cociente.
Ejemplo:
14,25 | 3
02 2 4,75
015
0

Número natural(N)


Número natural(N)
Un número natural es cualquiera de los números que se usan para contar los elementos de un conjunto. Reciben ese nombre porque fueron los primeros que utilizó el ser humano para la enumeración.
¿Que son los Números Naturales?
Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto.

Los números naturales son infinitos. El conjunto de todos ellos se designa por N:

N = {0, 1, 2, 3, 4,…, 10, 11, 12,…}
El cero, a veces, se excluye del conjunto de los números naturales.

Además de cardinales (para contar), los números naturales son ordinales, pues sirven para ordenar los elementos de un conjunto:

1º (primero), 2º (segundo),…, 16º (decimosexto),…
Los números naturales son los primeros que surgen en las distintas civilizaciones, ya que las tareas de contar y de ordenar son las más elementales que se pueden realizar en el tratamiento de las cantidades.

Entre los números naturales están definidas las operaciones adición y multiplicación. Además, el resultado de sumar o de multiplicar dos números naturales es también un número natural, por lo que se dice que son operaciones internas.

Propiedades de la adicion de Numeros Naturales

La adición de números naturales cumple las propiedades asociativa, conmutativa y elemento neutro.

1.- Asociativa:

Si a, b, c son números naturales cualesquiera se cumple que:

(a + b) + c = a + (b + c)
Por ejemplo:

(7 + 4) + 5 = 11 + 5 = 16
7 + (4 + 5) = 7 + 9 = 16
Los resultados coinciden, es decir,

(7 + 4) + 5 = 7 + ( 4 + 5)

2.-Conmutativa

Si a, b son números naturales cualesquiera se cumple que:

a + b = b + a
En particular, para los números 7 y 4, se verifica que:

7 + 4 = 4 + 7
Gracias a las propiedades asociativa y conmutativa de la adición se pueden efectuar largas sumas de números naturales sin utilizar paréntesis y sin tener en cuenta el orden.

3.- Elemento neutro

El 0 es el elemento neutro de la suma de enteros porque, cualquiera que sea el número natural a, se cumple que:

a + 0 = a
Propiedades de la Multiplicacion de Numeros Naturales

La multiplicación de números naturales cumple las propiedades asociativa, conmutativa, elemento neutro y distributiva del producto respecto de la suma.

1.-Asociativa

Si a, b, c son números naturales cualesquiera se cumple que:

(a · b) · c = a · (b · c)

Por ejemplo:

(3 · 5) · 2 = 15 · 2 = 30

3 · (5 · 2) = 3 · 10 = 30

Los resultados coinciden, es decir,

(3 · 5) · 2 = 3 · (5 · 2)

2.- Conmutativa

Si a, b son números naturales cualesquiera se cumple que:

a · b = b · a

Por ejemplo:

5 · 8 = 8 · 5 = 40

3.-Elemento neutro

El 1 es el elemento neutro de la multiplicación porque, cualquiera que sea el número natural a, se cumple que:

a · 1 = a


4.- Distributiva del producto respecto de la suma

Si a, b, c son números naturales cualesquiera se cumple que:

a · (b + c) = a · b + a · c

Por ejemplo:

5 · (3 + 8) = 5 · 11 = 55
5 · 3 + 5 · 8 = 15 + 40 = 55
Los resultados coinciden, es decir,

5 · (3 + 8) = 5 · 3 + 5 · 8


Propiedades de la Sustraccion de Numeros Naturales

Igual que la suma la resta es una operación que se deriva de la operación de contar.

Si tenemos 6 ovejas y los lobos se comen 2 ovejas ¿cuantas ovejas tenemos?. Una forma de hacerlo sería volver a contar todas las ovejas, pero alguien que hubiese contado varias veces el mismo caso, recordaría el resultado y no necesitaría volver a contar las ovejas. Sabría que 6 - 2 = 4.

Los términos de la resta se llaman minuendo (las ovejas que tenemos) y sustraendo (las ovejas que se comieron los lobos).

Propiedades de la resta:
La resta no tiene la propiedad conmutativa (no es lo mismo a - b que b - a)



Propiedades de la Division de Numeros Naturales
La división es la operación que tenemos que hacer para repartir un numero de cosas entre un número de personas.

Los términos de la división se llaman dividendo (el número de cosas), divisor (el número de personas), cociente (el numero que le corresponde a cada persona) y resto (lo que sobra).

Si el resto es cero la división se llama exacta y en caso contrario inexacta.

Propiedades de la división
La división no tiene la propiedad conmutativa. No es lo mismo a/b que b/a.


Historia

Antes de que surgieran los números para la representación de cantidades, el ser humano usó otros métodos para contar, utilizando para ello objetos como piedras, palitos de madera, nudos de cuerdas, o simplemente los dedos. Más adelante comenzaron a aparecer los símbolos gráficos como señales para contar, por ejemplo marcas en una vara o simplemente trazos específicos sobre la arena (Véase hueso de Ishango). Pero fue en Mesopotamia alrededor del año 4.000 a. C. donde aparecen los primeros vestigios de los números que consistieron en grabados de señales en formas de cuñas sobre pequeños tableros de arcilla empleando para ello un palito aguzado. De aquí el nombre de escritura cuneiforme. Este sistema de numeración fue adoptado más tarde, aunque con símbolos gráficos diferentes, en la Grecia Antigua y en la Antigua Roma. En la Grecia antigua se empleaban simplemente las letras de su alfabeto, mientras que en la antigua Roma además de las letras, se utilizaron algunos símbolos.

Convenios de notación

Puesto que los números naturales se utilizan para contar objetos, el cero puede considerarse el número que corresponde a la ausencia de los mismos. Dependiendo del autor, el conjunto de los números naturales puede presentarse entonces de dos maneras distintas:
§  Definición sin el cero:
§  Definición con el cero:
donde la N de natural se suele escribir en "negrita de pizarra".
Ambas presentaciones son utilizadas en distintas áreas de las matemáticas. Históricamente, el uso del cero como numeral fue introducido en Europa en el siglo XII con la invasión musulmana de la Península Ibérica,[1] pero no se consideraba un número natural.[2]
Sin embargo, con el desarrollo de la teoría de conjuntos en el siglo XIX, el cero se incluyó en las definiciones conjuntistas de los números naturales. Esta convención prevalece en dicha disciplina,[3]y otras, como la teoría de la computación.[4] En particular, el estándar DIN 5473 adopta esta definición.[4] Sin embargo, en la actualidad ambos convenios conviven.

Definición en teoría de conjuntos

En teoría de conjuntos se define al conjunto de los números naturales como el mínimo conjunto que es inductivo. La idea es que se pueda contar haciendo una biyección desde un número natural hasta el conjunto de objetos que se quiere contar. Es decir, para dar la definición de número 2, se requiere dar un ejemplo de un conjunto que contenga precisamente dos elementos. Esta definición fue proporcionada por Bertrand Russell, y más tarde simplificada por Von Neumann quien propuso que el candidato para 2 fuera el conjunto que contiene solo a 1 y a 0.

Como Mantener Nuestras Salud Integral Y Bienestar En Tiempos De Pandemia

  “Como Mantener Nuestras Salud Integral Y Bienestar   En Tiempos De Pandemia.”   Introducción La pandemia de COVID-19 nos ha llevado ...